

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics		
QUALIFICATION CODE: 07BSAM LEVEL: 6		
COURSE CODE: SIN601S	COURSE NAME: STATISTICAL INFERENCE 2	
SESSION: NOVEMBER 2022	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Dr D. B. GEMECHU	
MODERATOR:	Dr D. NTIRAMPEBA	

INSTRUCTIONS		
1.	There are 5 questions, answer ALL the questions by showing all	
	the necessary steps.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	
4.	Round your answers to at least four decimal places, if	
	applicable.	

PERMISSIBLE MATERIALS

1. Nonprogrammable scientific calculator

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [29 Marks]

1.1. Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistic of n independently and identically distributed continuous random variables X_1 , X_2 , ..., X_n with probability density function f and cumulative distribution function of r^{th} order statistics, $F_{Y_r}(y)$ is given by

$$F_{Y_r}(y) = \sum_{k=r}^{n} {n \choose k} (F_X(y))^k (1 - F_X(y))^{n-k}$$

Use this result to show that the marginal distribution of the rth order statistic is given by

$$f_{Y_r}(y) = \frac{n!}{(n-r)!(r-1)!} [F_X(y)]^{r-1} [1 - F_X(y)]^{n-r} f_X(y)$$
 [10]

[4]

[3]

1.2. Suppose the random variables X_1 , X_2 , ..., X_n are independently and identically distributed exponentially with the parameter θ , that is

$$f(x) = \begin{cases} \theta e^{-\theta x}, x > 0 \\ 0, & elsewhere \end{cases}$$

Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics for $X_1, X_2, ..., X_n$. Then,

- 1.2.1. Show that the cumulative density function of X is, $F_X(x) = 1 e^{-\theta x}$ [3]
- 1.2.2. Find the probability density function of the minimum order statistic Y_1 [4]
- **1.2.3.** Which density function does the p.d.f of Y_1 belongs to? [1]
- **1.2.4.** Find the joint p.d.f. of $Y_1, Y_2, ..., Y_n$
- **1.2.5.** If n = 5 and $\theta = 0.5$, then find
- **1.2.5.1.** the probability that the sample maximum is greater than 2. [4]
- **1.2.5.2.** the probability density function of the median.

Question 2 [12 Marks]

- 2.1. Let X_1, X_2, \ldots, X_n be independently and identically distributed random variable with normal distribution having $E(X_i) = \mu$ and $V(X_i) = \sigma^2$. Then show, using the moment generating function, that $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$ has a standard normal distribution. (Hint: If $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, then $M_{\bar{X}}(t) = e^{\mu t + \frac{\sigma^2 t^2}{2n}}$).
- 2.2. Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with mean μ and variance σ^2 . Then find the expected value of $S^2 = \frac{\sum_{i=1}^n (X_i \bar{X})^2}{n-1}$.

Hint:
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$$
 with mean $(n-1)$ and variance $2(n-1)$

Question 3 [23 Marks]

3.1. A random sample of n observations $X_1, X_2, ..., X_n$ is selected for a population X_i , for i =1, 2, ..., n which possesses a gamma probability density function with parameters α and θ . Use the method of moment to estimate α and θ .

(Hint: If X~Gamma(
$$\alpha$$
, θ), then the $M_X(t) = (1 - \theta t)^{-\alpha}$) [10]

[7]

[6]

3.2. Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with density function

$$f_X(x|\theta) = \begin{cases} (1-\theta)x^{-\theta} & \text{for } 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Find maximum likelihood estimators of θ .

3.3. Observations Y_1, \ldots, Y_n are assumed to come from a model with $E(Y_i) = 2 + \theta x_i$ where θ is an unknown parameter and $x_1, x_2, ..., x_n$ are given constants. What is the least square estimate of the parameter θ ?

Question 4 [26 Marks]

4.1. Let X_1, X_2, \ldots, X_n denote a random sample a Rayleigh distribution with parameter θ .

. Let
$$X_1, X_2, \ldots, X_n$$
 denote a random sample a Rayleigh distribution with parameter θ .
$$f_X(x|\theta) = \begin{cases} 2\theta x e^{-\theta x^2} & for \ x>0 \ \text{and} \ \theta>0 \\ 0 & otherwise \end{cases}$$
 Show that $\sum_{i=1}^n x_i^2$ is sufficient for θ

4.2. Suppose a random sample $X_1, X_2, ... X_n$ is selected from a normally distributed population with unknown mean μ and variance σ^2 .

4.2.1. Show that
$$\bar{X}$$
 is a minimum variance unbiased estimator (MVUE) of μ . [15]

4.2.2. Derive the
$$100(1-\alpha)\%$$
 CI for μ using the pivotal quantity method.

Question 5 [10 Marks]

5. Suppose one observation was taken of a random variable X which yielded the value 2. The density function for X is

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & for \ 0 < x < \theta \\ 0 & otherwise \end{cases}$$

and the prior distribution of θ is

$$h(\theta) = \begin{cases} 2\theta^{-2} & \text{for } 1 < \theta < \infty \\ 0 & \text{otherwise} \end{cases}$$

5.1. Find the posterior distribution of θ .

[7]

5.2. If the squared error loss function is used, find the Bayes' estimate of θ . [3]

> === END OF PAPER=== **TOTAL MARKS: 100**